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Abstract. Recently, a class dPT-invariant quantum mechanical models described by the non-
Hermitian HamiltonianH = p? + x2(ix)¢ was studied. It was found that the energy levels for this
theory are real for ak > 0. Here, the limit ag — oo is examined. It is shown that in this limit,
the theory becomes exactly solvable. A generalization of this Hamiltoflas, p? + x2M (ix)¢

(M =1,2,3,...)is also studied, and thiBT-symmetric Hamiltonian becomes exactly solvable

in the largee limit as well. In effect, what is obtained in each case is a complex analogue of the
Hamiltonian for the square-well potential. Expansions about the laliyeit are obtained.

1. Introduction

The infinite square-well potential,

0 (x| < 1)
Vsw(x) = 11 (x| =1) (1.1)
00 (x| > D

is the simplest of all guantum potentials. It is studied at the beginning of any introductory
class in quantum mechanics. This model is a useful teaching tool because the eigenvalues and
eigenfunctions for this potential can all be found in closed form.

The infinite square-well potential can be regarded as the limiting case of a class of potentials
of the form

Vi (x) = x?M (M=1,2234,..). (1.2)
Here, asM — oo, Vi (x) = Vsw(x).
The eigenvalues of the Hamiltonian g,
H = p2 +x2M (13)

can only be found in closed form for the special case of the harmonic oscillaterl. For all
other positive integer values &f there is no exact solution to these anharmonic oscillators.
Thus, the only two exactly solvable cases known are the extreme lower and uppeMimits
andM — oo. The asymptotic behaviour of the eigenvaluegfin equation (1.3) for large
M was studied in [1].

Inarecentletter [2] the spectra of the class of non-Hermfi@rsymmetric Hamiltonians
of the form

H = p? + x?(ix) (e > 0) (1.4)
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Figure 1. Energy levels of the Hamiltonia#l = p? + x2(ix)¢ as functions of the parameter

There are three regions: when> 0 the spectrum is entirely real and positive. All eigenvalues
rise monotonically with increasing. The lower bound of this regior, = 0, corresponds to

the harmonic oscillator, whose energy levels &je= 2k + 1. When—1 < ¢ < 0, there are

a finite number of real positive eigenvalues and an infinite number of complex conjugate pairs
of eigenvalues. Ag decreases from 0 te-1, the number of real eigenvalues decreases. As
approaches-1*, the ground-state energy diverges. Ea€ —1 there are no real eigenvalues.

were shownto be real and positive. Itis believed thatthe reality and positivity of the spectraare a
consequence T symmetry. Here, the cage= 0 is again the harmonic oscillator. For finite
values ofe larger than zero there is no exact analytical solution for the eigenvalues. However,
solutions can be found by numerical integration; the eigenvalud$ of equation (1.4) as
functions ofe are displayed in figure 1.

In the past we have always regarded the parametes being small; we have defined
theories by analytically continuing away froen= 0. However, in this paper we investigate
thelarge-¢ limit of the Hamiltonian in equation (1.4). We will show that in this limit the theory
becomes exactly solvable. An exact formula for ktie energy level in the limit of large is

Er(e) ~ 3(k + 3)%€? (€ = 00). (1.5)

More generally, we consider the largdimit of an infinite number of classes dPT-
symmetric Hamiltonians of the form [3]

H = p?+x2M (ix)" (>0, M=123,..). (1.6)

For each positive integer value aff, these Hamiltonians may be regarded as complex
deformations of the Hermitian Hamiltoniai = p? + x?™ in equation (1.3). In the limit
ase — oo each of these Hamiltonians becomes exactly solvable; the spectrum foe large
given by

E (M L1 P Y.
(M, €) 1 k+M+1 € (e = 00) 2.7)

whereP =1,2,3,..., M.
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For the Hamiltonian H in equation (1.6) the Schdinger differential equation
corresponding to the eigenvalue probléhy = Ev is

—y"(x) + xM (i) Y (x) = EY(x). (1.8)

To obtain real eigenvalues from this equation it is necessary to define the boundary conditions
properly. The regions in the cut complexplane in whichy (x) vanishes exponentially
as|x| — oo are wedges. In [2, 3] the wedges for> 0 were chosen to be the analytic
continuations of the wedges for the anharmonic oscillates ), which are centred about the
negative and positive real axes and have angular openig +1). This analytic continuation
defines the boundary conditions in the compleglane. For arbitrary > 0 the anti-Stokes’

lines at the centres of the left and right wedges lie below the real axis at the angles

o . €m
left = —T0 + ——F—

AM +2¢ +4
_— ot 1.9)
AT )

The opening angle of each of these wedges7ig(2M + ¢ + 2). In [2, 3] the time-
independent Schdinger equation was integrated numerically inside the wedges to determine
the eigenvalues to high precision. Observe that mereases from its anharmonic oscillator
value ¢ = 0), the wedges bounding the integration path undergo a continuous deformation as
a function ofe. As ¢ increases, the opening angles of the wedges become smaller and both
wedges rotate downward towards the negative-imaginary axis. Also, note that the angular
differencedrignt — Oler = 27 (M + 1) /e approaches zero asncreases.

This paper is organized very simply. In section 2 we consider the speciahMfasel
in equation (1.4). Then in section 3 we generalize to the case of arbitrary iméger
equation (1.6). Finally, in section 4 we examine expansions about the co limit of the
theory.

2. Special caseVf = 1

The eigenvalues aff in equation (1.4) can be found approximately using WKB theory. The
left and right turning points for this calculation lie inside the left and right wedges at

Xeft = EY @ ex (—irr + S in)

left p 2 +4 2.1)
Xy = EY@* exp(— € i )

9 2¢+4

As explained in [2], the WKB quantization formula is

Xright
(k+ %)7‘[ ~ / ’ dxv E — x2(ix)¢ (k — 00) (2.2)
Xleft
where the path of integration is a curve from the left turning point to the right turning point
along which the quantitydtimes the integrand of equation (2.2¥é&sal. This path lies in the
lower-halfx plane and is symmetric with respect to the imaginary axis. The path resembles
an inverted parabola; it emerges from the left turning point and rises monotonically until it
crosses the imaginary axis; it then falls monotonically until it reaches the right turning point.
As calculated in [2], the WKB quantization formula (2.2) gives

3e+8 1 %
E ~ |:F (2e+4) ﬁ(k + 2)i| (k — 00). (2.3)

sin(Zz) T (53)
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When the parameteris large, the right-hand side of equation (2.3) simplifies dramatically
and we have the result in equation (1.5) with corrections of ordiee. As we will see, this
happens to be the exact answer for all energy levels; that iallfealues ofk. Since the WKB
formula in equation (2.3) is only valid for largewith ¢ fixed, it is not at all obvious why the
leading-order WKB calculation gives the exact answer.

It is surprising to learn that the energy levels grow afor largee. Recall that the energy
levels of the Hamiltonian in equation (1.3) approach finite limitdfas> oo. (These limits are
the energy levels of the conventional square Well, in equation (1.1).) To understand why
the energy levels for th®T-symmetric Hamiltonian in equation (1.4) grow&swe use the
uncertainty principle. From equation (2.1) we see that the turning points rotate towards each
other asx — oo. (They both approach the poirt on the negative imaginary axis.) Indeed,
the distance between the turning points is of order. 1For the case of the Hamiltonidi in
equation (1.3) the turning points stabilizedat asM — oc0.) Thus, the quantum particle is
trapped in a region whose sizex is of order Ye. The uncertainty in the momentuny of
the particle is, therefore, of order Finally, since the energy is the square of the momentum,
we conclude that the energy levels must be of oeder

Let us rederive this result using the time-energy version of the uncertainty principle. As
explained in [2, 3], Zlassicalparticle described by the Hamiltonian in equation (1.4) exhibits

periodic motion. The perio@ of this complex pendulum is given exactly by the formula
I (3) cos(:)

r (%)

T =4/nE" %= (2.4)

For largee we have
T ~ 47 /(e VE) (€ — 00). (2.5)

Multiplying this equation byE gives the producET on the left-hand side, which, by the
uncertainty principle is of order 1. Thus, solving B we find again thak is of ordere? for
largee.

This last calculation illustrates an important difference between conventional quantum
theories andP?T-symmetric quantum theories. In a conventional Hermitian theory both the
classical periodic motion and the WKB path of integration coincide;dlissically allowed
region lies on the real axis between the turning points. FBrsymmetric theories the WKB
contour and the classical path do not coincide. The classical periodic motion follows a path
joining the turning points that, like the WKB path, is symmetric about the negative imaginary
axis. However, unlike the WKB path, the classical path mam@snwardrather than upward
as it approaches the negative-imaginary axis (see, for example, figure 2 of [3]).

Having discussed this problem heuristically, we now give a precise calculation of the
spectrum in the limit of large. We begin by substituting

Lo a1

x_<—|+2+€)E : (2.6)
into equation (1.8) withM = 1. The resulting differential equationt for largés

d? ;

GV @+ FriA+eMy () =0 @.7)
where

F = E/é? (2.8)

t The Schodinger equation (2.7) for the complex square well is the analogue of the infinite square well, i.e. the
large-M limit in the Schibdinger equation obtained from the Hamiltonian in equation (1.3). But in contrast to the
simple trigonometric wavefunctions for the infinite square well, the wavefunctions for the complex square well are
given by Bessel functions (see equation (2.13)).
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and we have used the identity lim,, (1 +x/€)¢ = €.

The advantage of the differential equation (2.7) is that it is independent @s such,
this equation corresponds to theindependent Scdinger equation for the square well that
is obtained from equation (1.3) in the limit of lar@é.) In the variable; the turning points at
z = —1 and 1 are fixed and well separated in the limit of latgelhe largee behaviour of
E in equation (1.5) is already evident in equation (2.8). Imposing the appropriate boundary
conditions on equation (2.7) gives eigenvaldethat are clearly independent ef Thus, for
largee we see thaE grows likee?.

Because there is no longer any small parameter in equation (2.7), this equation cannot be
solved approximately using a perturbative method such as WKB. It is necessary to solve this
equation exactly. Fortunately, we can solve it exactly by making a simple substitution. The
change of variable

w = 2V Fe™/? (2.9)
converts equation (2.7) to a modified Bessel equation [4]:

d? d
w?——y(w) + w—y (w) — (W +v¥)yY(w) =0 (2.10)
dw? dw
where
v=2JF. (2.11)
The exact solution to this equation is a linear combination of modified Bessel functions [4]:
v (w) = C1l,(w) + C2K, (w) (2.12)
whereC; andC, are arbitrary constants. Thus, in terms of theariable we have
¥(2) = C1l, (v€7/?) + CoK, (v€™/?). (2.13)
We must now impose boundary conditions¥(r). Emanating from the turning points
atz = —1 and 1 are three Stokes’ lines (lines along which the solution is purely oscillatory

and not growing or falling exponentially) and three anti-Stokes’ lines (lines along which the
solution is purely exponential and not oscillatory). These Stokes’ and anti-Stokes’ lines are
shown as dashed and solid curves on figure 2. The Stokes’ lines emerge from the turning points
going up to the left and the right at 3&nd also directly down. The anti-Stokes’ lines emerge
from the turning points going down to the left and the right &t&ed directly up. Note that the
Stokes’ line going up to the right from the turning pointat —1 joins continuously onto the
Stokes’ line going up to the left from the turning pointzat 1. The anti-Stokes’ lines going
down to the left frony = —1 and down to the right from = 1 eventually become vertical

and asymptote to the lines Re= —2 and Re, = 2. We impose the boundary conditions
thaty (z) — 0 on these anti-Stokes’ lines because these correspond to the centre lines of the
wedges in equation (1.9) in the complexplane (forM = 1).

To summarize, in the largedimit of the Hamiltonian in equation (1.4), the eigenvalue
problem for the scaled eigenvalugsis a two-turning-point problem that lies along an arch-
shaped contour. The legs of the arches lie below thezreals and approact2 — ico. The
turning points at = £1 are joined by the Stokes’ line lying above the realxis as indicated
in figure 2. This is the complex version of the infinite square-well problem in elementary
quantum mechanics. In the square-well problem there are also two turning pairit§oaned
by a Stokes’ line lying on the real axis. However, there are no anti-Stokes’ lines along which
the wavefunction dies away exponentially; the wavefunction simply vanishes at the turning
points.

The quantized energy levels are determined by imposing the boundary conditions
discussed above on the modified Bessel functions in equation (2.13). For simplicity, we
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Figure 2. Stokes’ lines and anti-Stokes’ lines for the differential equation (2.7). Three Stokes’ lines
(dashed) and three anti-Stokes' lines (solid) emerge from the turning points atl. The path of

integration for the WKB quantization condition in equation (2.2) corresponds to the arch-shaped
dotted curve connecting the turning points.

impose these conditions on the vertical lires £2 — iy, wherey — +oo. In terms of the
variabley the wavefunction/ in equation (2.13) becomes

U (y) = C1l,(ve " e™/2) + C,K, (ve T e™/?) (2.14)
atz=—-2-—1iy,and
VU (y) = C1l, ve™e€/2) + C,K, (ve™e™/?) (2.15)

atz =2 —iy.

Our objective now is to simplify these equations by making the arguments of the modified
Bessel equations entirely real and positive. To do so we use the following functional equations
satisfied byl, andK, [4]:

L&) = €""'1,(2)
sin(mvr) (2.16)

Kv(e’" Z) =€ KU(Z)_”TWL)(Z)

wherem is an integer. According to these relations, equation (2.14) becomes

V() = C1e"™ L, (0V?) + Co[e7 K, (ve™/?) +in [, (v /)] (2.17)
and equation (2.15) becomes

VU (y) = C1e" I, (ve™/?) + Cole™ "™ K, (ve™/?) — i I, ve™/?)]. (2.18)

Next, we use the asymptotic behaviour of the modified Bessel functions for large positive
argument. The functiof, (r) grows exponentially and the functiaf, (r) decays exponentially
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Table 1. Comparison of the numerical valuesBe) with that predicted in equation (2.22) for the
ground statét = 0 of anx?(ix)¢ theory. The second column gives the exact values of the ground-
state energy for various values ©in the first column. The third column gives the valuesrof
obtained from the exact energy in the second column using equation (4.1), which is a more precise
version of equation (2.8). Finally, in the fourth and fifth columns the first and second Richardson
extrapolants [5] of the numbers in the third column are given. Note that the exact valfgs)of

and their Richardson extrapolants rapidly approach the asymptotic ?gl:ud)‘OGZS

€ Eo(€) F(e) R1(e) R2(e)

8 555331 0.07825 — —
18 20.67629 0.06998 0.06336 —
28 46.94324 0.06742 0.06281 0.06259
38 84.78728 0.06617 0.06266 0.06253
48 134.43752 0.06542 0.06260 0.06251
58 196.03417 0.06493 0.06257 0.06251

for large positiver [4]:

1
I,(r) ~ e (r — +00)
v2§r (2.19)
K,(@r) ~ Z—e" (r — +00).
V 2r

Eliminating the growing exponentials in equations (2.17) and (2.18) gives a pair of linear
equations to be satisfied by the coefficieifsandCa:

Cie7"™ + Coir =0

i . 2.20
Cle””' — Cuir =0. ( )

A nontrivial solution to equation (2.20) exists only if the determinant of the coefficients
vanishes:

— V7T i
da(imi j;>=—mnaﬁwn=o. (2.21)

Hencey =k + % and from equation (2.11), we have tieactresult
F=31(k+3)* (k=0,1,2,3,...). (2.22)

Finally, we use equation (2.8) to obtain the lakgbehaviour of the eigenvaluds given in
equation (1.5). We verify this result numerically in table 1.

3. Arbitrary integer M

The calculation of the energy levels for the general class of theories given in equation (1.6)
is a straightforward generalization of the calculation for the ddse- 1 in section 2. The
crucial ingredient in the calculation is understanding the array of Stokes’ and anti-Stokes’
lines along which we impose the boundary conditions. This difference leadsdependent
wavefunctions, but the condition that determines the eigenvalues is still a simple trigonometric
equation.

Just as for the cas® = 1, we scale the differential equation (1.8) using equation (2.6).
In the limit ase — oo the resulting differential equation is identical to equation (2.7) except
that now there is a factor ¢f-1)”** multiplying the exponential term. Again, we defifleas
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in equation (2.8) and change to the variablas prescribed by equation (2.9). This gives the
differential equation

2
de_zlﬂw) + wil/f(w) - [(—1)M+1w2 + VZ]I/f(w) =0 (3.1)
dw dw

which is the generalization of equation (2.10). In this equatids defined as before by
equation (2.11). Note that except for the appearance af-tig"** multiplying thew? term
this equation is independent df.

To solve equation (3.1) we consider the two cases of dddnd evenM separately. If
M is odd this equation is identical to equation (2.10), and the general solution is that given
in equation (2.12). IfM is even, equation (3.1) is no longer a modified Bessel equation,
but instead is just the standard Bessel equation. Hence, in this case the general solution to
equation (3.1) is a linear combination of the ordinary Bessel functipmsndy,,:

Y(w) = CiJy(w) + C2Y, (w). (3.2)
Thus, in terms of the variabtethe wavefunction in this case is
U (z) = C1J,(ve™?) + C,Y, (ve™H/?). (3.3)

Although it appears that this solution is independent of the param&tene must recall
that the boundary conditions do dependiénThus, the wavefunctions and energy eigenvalues
doindeed depend a¥1. To be precise, for a givel the Stokes’ lines emanating fram= +M
are joined by a string of adjacent arches of length 2. The anti-Stokes’ lines4edvand
asymptote to the lines Re= +(M +1).

For odd M we impose the boundary conditions as for the clse= 1 except that the
wavefunctiony vanishes along different lines. For evéithe wavefunctions in equation (3.3)
must first be expressed in terms of modified Bessel functions using the functional equations [4]

J,(iz) = €721,(z)

_2 ' , 3.4
V(i) = —e 2K, (2) + 1€V (2) G4

and then be treated using the same procedure as fadodd
Although the matrix elements for the linear equations obtained fond@dahd evenVf are
quite different, the eigenvalue conditions are similar. Hoe= 2 the condition is

cos2vr) = —3 (3.5)
whose solution is
v=k+1 and v=k+2. (3.6)
Thus, for largee the energy is given by
1 PV,

whereP = 1, 2. Note that this result is th&f = 2 case of equation (1.7). This expression is
verified numerically in table 2 for the case of the ground state energy correspondirg @o
and P = 1. For arbitraryM one obtains the result in equation (1.7).

Observe that the magnitude of the energy eigenvalues decreakemareases. At first
glance this might seem surprising, but it can be easily understood in terms of the uncertainty
principle. AsM increases, the anti-Stokes’ lines on which we impose the boundary conditions
for the differential equation (1.8) move away from the negative imaginary axis, as we can see
from equation (1.9). For example, for fixedhe anti-Stokes’ lines fai = 2 are separated by
a greater distance than fof = 1; the anti-Stoke’s lines fa¥/ = 3 are separated by a greater
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Table 2. Comparison of the numerical values Bfe) with that predicted in equation (3.7) for the
ground stat = 0, P = 1 of anx*(ix)€ theory. The second column gives the exact values of the
ground-state energy for various values:af the first column. The third column gives the values

of F obtained from the energy in the second column using equation (4.1). Finally, in the fourth and
fifth columns the first and second Richardson extrapolants [5] of the numbers in the third column
are given. Note that the exact valueskfe) and their Richardson extrapolants rapidly approach
the asymptotic valugs = 0.027 7778.

€ Eo(€) F(€) Ri(e) Ra(€)

8 2.65128 0.05035 — —_
18 9.21477 0.03551 0.02661 —
28 20.70525 0.03232 0.02722 0.02740
38 37.32010 0.03097 0.02746 0.02766
48 59.16865 0.03023 0.02756 0.02772
58 86.31766 0.02977 0.02764 0.02775

distance than foM = 2, and so on. Hence, the uncertainty in the posittonincreases with

M. By the uncertainty principle, this increase in the uncertainty of the position corresponds
to a decrease in the uncertainty of the momentum, and thus, a decrease in the energy. This
argument explains the largd-behaviour of the result in equation (1.7).

4. Higher-order corrections to thee — oo limitfor M =1

In this section we show how to calculate the corrections to the largehaviour in
equation (1.5). These corrections are of okd@nde In €. From these higher-order calculations

we obtain an extremely accurate approximatinfor all k. Our asymptotic analysis begins

with the change of variable in equation (2.6), but we use a more precise version of equation (2.8):

et
€+2

F(e) = . 4.1
©= o (4.1)
We find that the functionF(¢) is a series in inverse powers ef of the form F =
fo+ fie 1+ fre?2 +.... The coefficientfy, = F(oco) is given in equation (2.22). Our

objective here is to calculatg, and from this to calculate the first correctionfo
In addition to F(¢), the wavefunctiony is also a series in inverse powers of
V(z) = Yo + Y1(z)et + Ya(z)e 2 + ---. Using this series and collecting like powers of
€ we obtain the following sequence of differential equations:
2
€% gz Vo@ * for*(1+ €M)yo(z) = 0
2

d .
et @+ for2(L+ €)Y (z) = —
2

) 2 .
[fonze'” % + fi(l+ éz”)} 7% Yo(2)
: . ) 2 ’
€2 @)+ for* (L4 ETa0) = - [foﬂzd” 7t ém)] e

(4.2)

4_4 2.2
- [foei” <ZZ7TZ + 2% — %) + 1€ %ﬂ‘fz(l + ém):| Y0 (2).

The first equation is exactly equation (2.7). The second equation contains the coefficient
f1. To solve for f; we observe that the solution to the homogeneous part of the equation is
just the solution to the first equation. This suggests using the method of reduction of order; to
wit, we lety1(z) = u1(z)¥o(z). To solve the resulting equation fg§ we then multiply by
Yo(z) and integrate over the WKB path with respecttoThe first equation can be used to
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Table 3. Comparison of the numerical value of the coefficightin equation (4.6) with a fit

to the exact values of (¢) for the case of the ground state= 0 of anx2(ix)¢ theory. The
second column gives the exact values of the ground-state energy for various valueshsf first
column. The third column gives the approximationftoobtained fromF (¢) by subtracting off

the leading large- behaviour given in equation (2.22). In the fourth and fifth columns the first
and second Richardson extrapolants [5] of the numbers in the third column are given. Note that
the approximations in the third column and their Richardson extrapolants rapidly approach the
asymptotic value off; = y /4 = 0.144 304.

€ Eo(e) Ro(e) R1(e) Ra(e)

8 555331 0.12597 — —
18 20.67629 0.13460 0.14150 —
28 46.94324 0.13767 0.14321 0.14389
38 84.78728 0.13926 0.14372 0.14418
48 13443752 0.14024 0.14394 0.14425
58 196.03417 0.14090 0.14406 0.14428

simplify this equation and the left-hand side becomes the expression/é(z) evaluated at
the end points. Sincgy(—ioco) = 0, the left-hand side equals zero, and we can solveifor
in quadrature form. To be explicit,

1., 21 dz 222 () e
fl = _EfOT[ 2 0o 2 N .
i Uz Y5 (2) (1 +€77)
To prepare for evaluating these integrals we change to the vaniableequation (2.9)
with F = fo and obtain
1720 dwwyZ)In? (3%
2 ey (1+22)
wheres is infinitesimal and the contour of integration goes around the origin.
For the cas& = O these integrals are easy to evaluate becgise 116 andyo(w) =

I12(w) + K10(w)/m = €*/+/2mrw. Substituting these expressions into equation (4.4) gives
17250 dw € In?(2w)
2 f <>o+|5|(s dw 2 (4 + u::-z)

By carefully evaluating the discontinuities across the branch cut and the residues at the
singularities of the integrands, we obtain

fi=y/4 (4.6)

wherey is Euler's constant. Combining this result with equation (4.1) and solving for
the limit of largee yields

E=2te?—leine+1(1+y+2In2e+0O(ne). 4.7
By comparison, if we calculate to next order in WKB, we obtain forktieenergy level:
g~ | TER) Va7 [ @rod+osin(E)
¢ sin(Z£) T (3%) 67 (k + 1)2(4 +€)?
Taking the large= limit of this expression gives

2 1 1/7
E:6___6|n5+z<§+|n2>e+0(ln6). (4.9)

(4.3)

fi= (4.4)

fi= (4.5)

} (k = 00). (4.8)

16 4



Complex square well—a new exactly solvable model 6781

The appearance of a legterm in this behaviour is a consequence of the structure of
equation (4.1). Note that the coefficent of théerm for WKB differs from the exact result
but WKB is numerically very accurate. WKB gives 0.756 62 compared with 0.740 88 for the
exact result.

In table 3 the results of a Richardson extrapolation [5] of the exact valuégefare
given. These results verify that the valuefafis correct.
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